
18 The Delphi Magazine Issue 72

Under Construction:
Delphi 6 Web Services: SOAP
by Bob Swart

When I wrote last month,
Delphi 6 had just been

announced but was not yet avail-
able. Delphi 6 has now been avail-
able for a short while, and I’ve been
playing with my copy of Delphi 6
Enterprise, especially with the new
SOAP support, which is most
notably featured in the new
functionality called Web Services.
Another topic that’s hot on my list
to cover is WebSnap, the second
enhancement to WebBroker (the
first enhancement was Internet-
Express, which seems to have been
left on a side track this time).
WebSnap is new, but not very well
documented to be honest: it com-
bines lots and lots of possibilities
with a significant learning curve, so
I want to do some more exploration
of WebSnap and start my (multi-
part) coverage of this featureset
next month in these pages. For
now, let’s talk Web Services and
start to use SOAP.

BizSnap: Web Services
One of the hot new features of
Delphi 6 is called BizSnap. As part
of BizSnap, we now have SOAP
support and we can make Web

Services (one of the most recent
‘hyped-up’ topics). Before I can
explain why we need SOAP in the
first place, let’s talk a bit about the
end result: a Web Service. Why is
this so hot, and what does Delphi 6
offer that other tools don’t have
yet)? A Web Service can be seen as
the server side of a distributed
application. Using SOAP (Simple
Object Access Protocol), we make
the methods of our remote objects
available to the outside world. The
actual description of the Web Ser-
vice is written in WSDL, which
stands for Web Service Description
Language, a subset of XML. Don’t
worry: you do not really have to
learn very much about SOAP, XML,
WSDL or some of the other acro-
nyms that I won’t even cover (like
UDDI) in order to use Delphi 6 to
produce a working Web Service, as
we will see in this step-by-step
article.

Building Web Services
Delphi 6 BizSnap contains support
for SOAP and XML in the form of
Web Services. You can think of a
Web Service as a ‘remote object
instance’ (almost like a remote
component) that any client
application can use to execute or
provide some service (‘interface’).

It is very similar to what CORBA
and DCOM have been doing for
years, but Web Services use
SOAP/XML as the protocol to
exchange messages. [The advan-
tage of SOAP over CORBA or DCOM
is that it is text-based (using XML)
and so penetrates firewalls easily.
Ed]

If this doesn’t help to make it
clear, yet, let’s just go ahead and
make a Web Service. In the end, it
will turn out to be very simple, and
yet powerful enough (SOAP is both
platform- and language independ-
ent) to change the world of
distributed computing.

In order to make a Web Service,
we must go to the Web Services tab
of the Object Repository, and
select the Soap Server Application
wizard (the other two Web Service
wizards are Soap Server Data
Module and the Web Services
Importer: we will see the latter in
the second half of this article).

Once you start the wizard you
almost feel like you’ve started the
wrong one (the web server appli-
cation wizard) by mistake. We can
make a choice for our type of web
server application. Web Services
made by Delphi 6 are in fact
WebBroker applications that
respond to certain input requests.

➤ Below: Figure 1
Right: Figure 2

August 2001 The Delphi Magazine 19

For a real-world Web Service, you
may need to select an ISAPI/NSAPI
or Apache Shared Module (DLL)
application. For debugging pur-
poses you can use the new Web
App Debugger executable target,
which is based on COM (but
cannot be deployed, so you need to
change your project wrapper to a
different target once you’re done
debugging).

For now, select the CGI
standalone executable (the easiest
choice to deploy while writing this
article) and click on the OK button.
Save the resulting web module as
SWebMod.pas (notice that the web
module already has components
on it: HTTPSoapDispatcher1, HTTP-
SoapPascalInvoker1 and WSDLHTML-
Publish1), and save the Web Ser-
vice project as WebService42.dpr.

The THHTPSoapDispatcher compo-
nent is the one that manages the
calls to the web server executable,
dispatching the incoming actions
(like /WSDL and /SOAP). It provides

customised support for SOAP
applications by providing some
standard actions that provide
basic information about the Web
Service itself.

The HTTPSoapPascalInvoker is the
component that receives the SOAP
requests and converts it to our
own ObjectPascal implementation.
This one uses an interface derived
from IInvokable (that is, an
invocable interface). [And yes,
‘invocable’ is a real English word,
but ‘invokable’ is not! Ed]

The TWSDLHTMLPublish compo-
nent publishes the WSDL interface
for the Web Service, so that others
can access it easily and use it.

Without this, nobody would know
what the Web Service could do,
which isn’t very useful of course.

The good news is that we don’t
have to do (or change) anything
with these components. Just pre-
pare the next step, which consists
of defining the interface to the
outside world.

Interface
In order to add a Web Service, you
have to add an interface, derived
from IInvokable, and provide an
implementation for it. For
example, let’s define an interface
called THitchHiker with two
functions: TheAnswer and
TheQuestion. First, we have to man-
ually add a new unit to our project
using File | New | Unit, save it as
HitchHiker.pas and add the code in
Listing 1. Note that we can get a
fresh unique GUID by pressing
Ctrl+G inside the Delphi 6 code
editor.

Note that we don’t need
anything special to define the
interface. But we do have to
include the InvokeRegistry unit in
order to be able to register our
interface. Not that we can do any-
thing with it, yet, since we haven’t
implemented it, but at least we are
publishing the interface, its meth-
ods and arguments (if we have
used any).

At this time, you can still change
the interface, which will be a
contract between the Web Service
‘server’ application and any Web
Service ‘client’ that wants to make
use of it. You must realise that
once you’ve made your Web
Service available worldwide (by
deploying it on a web server),
users will not appreciate it if you
change the interface again! You

➤ Figure 3

unit HitchHiker;
interface
type
IHitchHiker = interface(IInvokable)
['{06723E05-662D-11D5-81CE-00104BF89DAD}']
function TheAnswer: Integer; stdcall;
function TheQuestion: String; stdcall;

end;
implementation
uses InvokeRegistry;
initialization
InvRegistry.RegisterInterface(TypeInfo(IHitchHiker));

end.

➤ Listing 1: IHitchHiker Interface.

unit HitchHiker;
interface
uses
InvokeRegistry;

type
IHitchHiker = interface(IInvokable)
['{06723E05-662D-11D5-81CE-00104BF89DAD}']
function TheAnswer: Integer; stdcall;
function TheQuestion: String; stdcall;

end;
THitchHiker = class(TInvokableClass, IHitchHiker)
public
function TheAnswer: Integer; stdcall;
function TheQuestion: String; stdcall;

end;
implementation
{ THitchHiker }
function THitchHiker.TheAnswer: Integer;
begin
Result := 42

end;
function THitchHiker.TheQuestion: String;
begin
Result := 'What do you get when you multiply six by nine?'

end;
initialization
InvRegistry.RegisterInterface(TypeInfo(IHitchHiker));
InvRegistry.RegisterInvokableClass(THitchHiker);

end.

➤ Listing 2: IHitchHiker Implementation.

20 The Delphi Magazine Issue 72

may get away with adding new
methods, but changing the
signature of one or more methods
is not recommended (and will
quickly discourage people from
using your Web Services at all).

It doesn’t really matter that the
documentation (or rather, the
WSDL specification) of your Web
Service is automatically made
public and produced dynamically
so it’s never outdated (as we’ll see
in a moment): a Web Service client
can still be made based on a
previous interface, which means it
can still be broken.

Implementation
Once the interface is complete
(and fixed in stone), it’s time to
implement it (Listing 2). Note that
the functions that I defined in the
interface are all explicitly using the
stdcall calling convention. This is
mandatory, so be sure not to forget

it or your Web Service will not
work: been there, done that, had to
change it back to stdcall.

Now we have a WebService42Web
Service, with two exported meth-
ods: TheAnswer and TheQuestion. To
test it, just move it to a Scripts
directory, and execute it with the
/wsdl/IHitchHiker pathinfo argu-
ment. If you didn’t type with me,
you can still see the output at

http://drbob42.tdmweb.com/
cgi-bin/WebService42.exe

since I’ve also moved the 763,904
bytes Web Service application to
the cgi-bin directory of my website
(hosted by TDMWeb, which offers
you the choice of a Linux web
server or a Windows 2000 web
server: my Kylix and Delphi web
server applications are indeed in
safe hands).

When using Netscape Navigator
(at least my version 4.7), I’m
prompted to open the resulting
XML file (inside Internet Explorer)

or save it to disk. The resulting
XML file when saved to disk is
2,282 bytes in size and is included
on the companion disk (it’s not
hard to read, but contains a
number of long lines). It doesn’t
hurt to save this file, since it may
come in handy at a later time
(when we have to import the WSDL
definition, either by using the full
URL seen in Internet Explorer, or
by specifying the XML file that
contains it).

The XML consists of a number of
sections, and contains the SOAP
definition for our Web Service. It
can be used by any environment,
including the upcoming Visual
Studio .NET (now in Beta 2). This
means that we can write distrib-
uted multi-tier applications using
Delphi and C#, provided that the
interface is using data types that
are native to both environments (I
wouldn’t want to try to pass a
Midas data packet from Delphi to
C# for example, but that’s a story
for another day).

<?xml version="1.0"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema"

name="IHitchHikerservice" targetNamespace="http://www.borland.com/soapServices/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

<message name="TheAnswerRequest"/>
<message name="TheAnswerResponse">
<part name="return" type="xs:int"/>

</message>
<message name="TheQuestionRequest"/>
<message name="TheQuestionResponse">
<part name="return" type="xs:string"/>

</message>
<portType name="IHitchHiker">
<operation name="TheAnswer">
<input message="TheAnswerRequest"/>
<output message="TheAnswerResponse"/>

</operation>
<operation name="TheQuestion">
<input message="TheQuestionRequest"/>
<output message="TheQuestionResponse"/>

</operation>
</portType>
<binding name="IHitchHikerbinding" type="IHitchHiker">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="TheAnswer">
<soap:operation soapAction="urn:HitchHiker-IHitchHiker#TheAnswer"/>
<input>
<soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:HitchHiker-IHitchHiker"/>
</input>
<output>
<soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:HitchHiker-IHitchHiker"/>
</output>

</operation>
<operation name="TheQuestion">
<soap:operation soapAction="urn:HitchHiker-IHitchHiker#TheQuestion"/>
<input>
<soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:HitchHiker-IHitchHiker"/>
</input>
<output>
<soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:HitchHiker-IHitchHiker"/>
</output>

</operation>
</binding>
<service name="IHitchHikerservice">
<port name="IHitchHikerPort" binding="IHitchHikerbinding">
<soap:address location="http://drbob42.tdmweb.com/cgi-bin/WebService42.exe/soap/IHitchHiker"/>

</port>
</service>

</definitions>

➤ Listing 3:
IHitchHiker SOAP XML.

22 The Delphi Magazine Issue 72

Using Web Services
Now, publishing a Web Service is
one thing, but only half of the story.
It really wouldn’t be complete if we
didn’t try to use it again. And this
time we’ll be using the remote Web
Service (the one on my web server
at http://drbob42.tdmweb.com/
cgi-bin/WebService42.exe). We
need two things: the URL that
returns the XML with the WSDL
(WebService Description Lan-
guage) and the Web Services
Importer from the Delphi 6 Object
Repository.

Start a new Delphi 6 project. It
can be anything you like, since you
can use a Web Service in any client
(except for a CLX application at
this time, but I’m sure that it won’t
be long until Kylix Enterprise
Studio is available, which will also
contain Web Service support).

To keep it simple, let’s start a
regular application, and save the
form in MainForm.pas and the
application itself in TDM72.dpr.
Drop two buttons (btnAnswer and
btnQuestion) on the form and two
LabeledEdit controls (lbeAnswer
and lbeQuestion).

Just in case you didn’t read the
Delphi 6 review last month: we now
have support for nested compo-
nents as sub-properties. The
TLabeledEdit component is one
such example, where the EditLabel
property is in fact a TLabel compo-
nent, for which we need to set the
Caption. The Delphi 6 Object
Inspector allows us to edit
sub-components as properties,
including the properties of the
sub-component. So without leav-
ing the LabeledEdit component,
we can now edit the Caption of

the EditLabel sub-
component using the
Object Inspector.

Set the EditLabel.Cap-
tion sub-property of the
first LabeledEdit to The
Answer, and the second to
The Question.

HTTPRIO
There’s one more component we
need to use the Web Service appli-
cation, and that’s the HTTPRIO com-
ponent from the Web Services tab of
the Delphi 6 Component Palette.
This component represents a
remote invokable object over an
HTTP connection (hence the name
HTTPRIO). The resulting form
should now look like Figure 5.

Before we can actually use the
HTTPRIO component, however, we
need to generate a special import
unit that represents the remote
object. For this we need the Web
Services Importer wizard from the
Object Repository. On the first
page, there is one editbox that
needs the full URL for the Web
Server Description Language file of
our WebService42 project. In our
example (and also for your own
experiments if you like), we can
use the Web Service hosted on my
website at

http://DrBob42.TDMWeb.com/
cgi-bin/WebService42.exe/
wsdl/IHitchHiker

As an alternative, you can load the
resulting XML file (for example,
when you use Netscape Navigator

➤ Figure 4

Unit HitchHikerImport;
interface
uses
Types, XSBuiltIns;

type
IHitchHiker = interface(IInvokable)
['{E325004C-3203-482D-95F8-30D0286C68DC}']
function TheAnswer: Integer; stdcall;
function TheQuestion: WideString; stdcall;

end;
implementation
uses
InvokeRegistry;

initialization
InvRegistry.RegisterInterface(TypeInfo(IHitchHiker),
'urn:HitchHiker-IHitchHiker', '');

end.

➤ Listing 4: IHitchHiker Import Unit.

➤ Figure 5

24 The Delphi Magazine Issue 72

to go to the above URL, you get the
option to save the XML file, and
you can use this file to create the
import unit).

Never mind that the XML file is
not connected to the actual remote
Web Service, because you still
need to tell the HTTPRIO component
the (invocation) location of the
remote Web Service, so a local file
to generate the import units for the
Web Service works just as well.

We can use the Advanced tab to
set some special options. I’ll actu-
ally leave this in peace, since the
default options are OK for this
example. The generated unit is
automatically added to the current
project, and I’ve saved it in the file
HitchHikerImport.pas. The source
code for this unit can be seen in
Listing 4.

Now, where have we seen this
before? You must admit that it
looks very much like Listing 1
which we saw earlier. In fact, the
only differences are the units
included in the uses clause of the
interface section (which can be

removed, by the
way) and the GUID,
which now refers to
the SOAP object on
the remote web
server. Now that we
have this interface
definition, we can
use the HTTPRIO
component to
create an instance
of the remote
server (as remote
invocable object)
and start using the
interface.

Using HTTPRIO
Now that we have the import unit
and HTTPRIO component on our
main form, we still need to add the
import unit to the main form, so
add uses HitchHikerImport, to the
implementation section of the
MainForm.pas unit.

Now, click on the HTTPRIO compo-
nent, move to the Object Inspector
and make sure to enter the full URL
for our Web Service WSDL XML
description in the WSDLLocation
property:

http://DrBob42.TDMWeb.com/
cgi-bin/WebService42.exe/
wsdl/IHitchHiker

I highly recommend
the use of copy and
paste in all cases
like this that involve
a WSDL URL, by the
way: it could save
you a lot of hassle
later!

After we have
specified the
WSDLLocation prop-
erty, we need to

select a value for the Service prop-
erty (just open up the drop-down
combobox to select the only possi-
ble value: IHitchHikerservice) and
a value for the Port property (after
you’ve selected a service, open the
drop-down combobox for the Port
property and select the only
possible value: IHitchHikerPort).

That’s all there is to it to let the
HTTPRIO be a connector to a remote
invocable object over HTTP. In
our client application, we can
now treat the HTTPRIO component
as a remote object (one that has
implemented the IHitchHiker
interface), and hence extract the
IHitchHiker interface from it and
use it directly.

Obviously, we need an internet
connection (or rather an HTTP
connection) to the Web Service
server, but you can also deploy
Web Service servers on your local
intranet or even on your local
machine, although for the solution
that I’ve presented in this paper
you need a web server as well to

➤ Figure 6

➤ Listing 5: HitchHiker
WebService Usage.

➤ Figure 7

unit MainForm;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics,
Controls, Forms, Dialogs, Rio, SoapHTTPClient, StdCtrls,
ExtCtrls;

type
TForm1 = class(TForm)
bntAnswer: TButton;
btnQuestion: TButton;
lbeAnswer: TLabeledEdit;
lbeQuestion: TLabeledEdit;
HTTPRIO1: THTTPRIO;
procedure bntAnswerClick(Sender: TObject);
procedure btnQuestionClick(Sender: TObject);

private
public
end;

var
Form1: TForm1;

implementation
{$R *.dfm}
uses
HitchHikerImport;

procedure TForm1.bntAnswerClick(Sender: TObject);
var
HitchHiker: IHitchHiker;

begin
HitchHiker := (HTTPRIO1 AS IHitchHiker);
lbeAnswer.Text := IntToStr(HitchHiker.TheAnswer)

end;
procedure TForm1.btnQuestionClick(Sender: TObject);
var
HitchHiker: IHitchHiker;

begin
HitchHiker := (HTTPRIO1 AS IHitchHiker);
lbeQuestion.Text := HitchHiker.TheQuestion

end;
end.

August 2001 The Delphi Magazine 25

host the WebBroker application, of
course.

The full, but not very long,
source code for the Web Service
client can be seen in Listing 5. Note
that I simply need to cast the
HTTPRIO instance to my IHitchHiker
interface type (the one from the
HitchHikerImport unit) before I can
use it.

The first time you click on any of
the buttons the response will take
a while: the connection has to be
made, and so on. However, subse-
quent requests to the same Web
Service will be much faster, as you
will see when you try this example
for yourself.

As long at the Web Service on my
web server is running you can
connect to it. However, for a more
extensive list of Web Services
(created in various different

environments), see the www.
xmethods.net website: I hope to be
listed there as well by the time you
read this!

Next Time
Apart from Web Services, Delphi 6
introduced a number of other
additional new web server
enhancements and functionality.
One example is WebSnap, which is
another extension or enhance-
ment of the good old WebBroker
Technology. For Delphi 5,
WebBroker had already been
extended with MIDAS support
using XMLBroker and the
MidasPageProducer, resulting in a
toolset called InternetExpress.
WebSnap can be compared with
InternetExpress in that it is an
extension of WebBroker, and it
uses some of the same ideas. But it

consists of many more compo-
nents, wizards and other tools
than I’ve ever seen in
InternetExpress and there is a lot
less documentation (although
Borland is working hard on more
documentation and examples at
this time). Nevertheless, in the
next two or three months I plan to
cover WebSnap: explaining how to
use it, how it works and also how to
extend it with your own wishes. All
this and more next time, so stay
tuned!

Bob Swart (aka Dr.Bob, www.
drbob42.com) is an @-Consultant,
Delphi Clinic Trainer and co-
founder of the Kylix/Delphi
OplossingsCentrum (visit www.
KDOC.nl) in The Netherlands.

	BizSnap: Web Services
	Building Web Services
	Interface
	Implementation
	Using Web Services
	HTTPRIO
	Using HTTPRIO
	Next Time

